Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2022: 1426837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281746

RESUMO

In this work, we deal with unsteady magnetohydrodynamic allowed convection inflow of blood with a carbon nanotubes model; the single and multiwalled carbon nanotubes of human blood are used as a based fluid. Two numerical methods used to study this model are the weighted average finite difference method and the nonstandard compact finite difference method. The proportional Caputo hybrid operator has been used to fractionalize the proposed model. Stability analysis has been construed by a kind of John von Neumann stability analysis. Numerical results are presented in diverse graphs, which manifest that the method is successful in solving the proposed model.


Assuntos
Nanotubos de Carbono , Sangue , Humanos , Hidrodinâmica , Magnetismo , Modelos Estatísticos , Nanotubos de Carbono/estatística & dados numéricos , Reologia
2.
Math Biosci Eng ; 16(5): 4873-4884, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31499694

RESUMO

The measurement of biological fluid uptake into a scaffold sensor has been modeled by measuring the response of induced high-frequency temperature pulses. For this, a heat transport equation is used, developed from Extended Thermodynamics, also equivalent to Cattaneo's equation, as well as an effective thermal conductivity. The effective thermal conductivity is experimentally validated against data measurements of a carbon nanotube porous nanocomposite, embedded with silica nanoparticles. This nanocomposite serves also as the case study for the scaffold sensor. The uptake of the biological fluid in this scaffold sensor is equivalent to a change in the effective thermal conductivity, monitored by an increase of the interstitial volume fraction. By imposing a high-frequency temperature oscillation, the temperature response at the other end of the porous medium is calculated. Depending on the ratio of the relaxation time and the thermal diffusion time, the temperature response can be of oscillatory nature or of an exponential growth to an asymptotic limit. It is observed that an observed phase lag in the temperature response indicates a change in the effective thermal conductivity and thus is a criterion denoting the amount of uptake.


Assuntos
Líquidos Corporais/metabolismo , Nanocompostos , Transporte Biológico , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/estatística & dados numéricos , Temperatura Alta , Humanos , Conceitos Matemáticos , Modelos Biológicos , Nanocompostos/química , Nanocompostos/estatística & dados numéricos , Nanotubos de Carbono/química , Nanotubos de Carbono/estatística & dados numéricos , Porosidade , Dióxido de Silício/química , Condutividade Térmica , Termodinâmica
3.
Univ. sci ; 22(3): 201-214, Oct.-Dec. 2017. ilus, graf
Artigo em Inglês | LILACS, COLNAL | ID: biblio-904714

RESUMO

Abstract This paper presents a study of the fluorescence quenching of 1-hydroxypyrene-3,6,8-trisulfonic acid (HPTS) in the presence of single-walled carbon nanotubes (SWCNT) using a fluorescence method. To investigate the quenching mechanism (dynamic or static) of HPTS, Stern-Volmer plots of single walled carbon nanotubes at different temperatures were used. The positive deviation from linearity in Stern-Volmer plots suggests that single walled carbon nanotubes follow a static quenching mechanism evidenced by the formation of a stable ground state complex. The results presented here help us to clarify the quenching mechanism in the interaction of a pyrene derived dye and carbon nanotubes. This study will open new possibilities in the use of the conjugate formed by SWCNTs and HPTS in the fabrication of a biosensor based on intracellular fluorescent probes.


Resumen Este artículo presenta el estudio de la desactivación de florescencia del ácido 1-hidroxipyreno-3,6,8-trisulfónico (HPTS) en presencia de nanotubos de carbono de pared única (SWCNT). Para investigar el mecanismo de desactivación (dinámico o estático) del HPTS se evaluaron nanotubos de carbono de pared única a diferentes temperaturas y se analizaron por medio de gráficas Stern-Volmer. La desviación positiva de la linealidad en las gráficas Stern-Volmer sugiere que los nanotubos de carbono de pared única actúan por medio de un mecanismo de desactivación estático, que se evidencia también por la formación de un complejo estable en estado fundamental. Los resultados presentados aquí nos ayudan a aclarar el mecanismo de desactivación de fluorescencia cuando tiene lugar la interacción entre un colorante derivado del pireno y nanotubos de carbono. Este estudio abre nuevas posibilidades para el uso de conjugados formados por SWCNT y HPTS en la fabricación de un biosensor basado en sondas fluorescentes intracelulares.


Resumo Este artigo apresentao estudo da diminuicao da fluorescência do ácido 1-hidroxipireno-3,6,8-trisulfônico (HPTS) em presença de nanotubos de carbono de parede simples (SWCNT). Para investigar o mecanismo da desativação (dinâmico ou estático) do HPTS se avaliaram nanotubos de parede simples em diferentes temperaturas e se analisaram por meio de gráficos Stern-Volmer. O desvio positivo de linearidade nos gráficos Stern-Volmer sugere que os nanotubos de carbono de parede simples atuam por meio de um mecanismo de desativação estática, que também se evidencia pela formação de um complexo estável fundamental. Os resultados apresentados aqui nos ajudam a aclarar o mecanismo de desativação de fluorescência quando ocorre a interação entre um corante derivado do pireno e nanotubos de carbono. Este estudo abre novas possibilidades para o uso de conjugados formados por SWCNT e HPTS na fabricação de um biosensor baseado em sondas fluorescentes intracelulares.


Assuntos
Nanotubos de Carbono/estatística & dados numéricos , Fluorescência
4.
J Immunotoxicol ; 13(5): 758-65, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27416475

RESUMO

The interaction of poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNT) with NK cells undergoing activation was examined. Exposure to AF-SWCNT during NK activation in vitro by interleukin (IL)-2, and in vivo by Poly(I:C) significantly lowered cytotoxic activity generated against YAC-1 tumor cells. Recoveries of spleen NK1.1(+) cells as well as the activated subset of NK cells (NK1.1(+)CD69(+) cells) were significantly reduced by the AF-SWCNT exposure. The proportion of apoptotic NK cells (NK1.1(+) phosphatidylserine(+)) in the spleen cell preparations activated in vitro was also significantly elevated. Expression levels of CD107a [for assessing NK cell degranulation] as well as of FasL marker [mediating non-secretory pathway of NK cell killing] were significantly lower in cells exposed to AF-SWCNT during the activation phase. Intracellular levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the cells were also significantly reduced. Fluorescent AF-SWCNT (FAF-SWCNT) were internalized by the NK cells and uptake was significantly greater in activated cells. Confocal microscopy indicated the internalized FAF-SWCNT were localized to the cytoplasm of the NK cells. These results indicated that AF-SWCNT were internalized by NK cells and caused a general down-regulation of a variety of parameters associated with NK cell cytotoxicity and other cellular functions.


Assuntos
Células Matadoras Naturais/imunologia , Linfoma/imunologia , Nanotubos de Carbono , Animais , Apoptose , Degranulação Celular , Linhagem Celular Tumoral , Citoplasma/metabolismo , Citotoxicidade Imunológica , Regulação para Baixo , Interferon gama/metabolismo , Interleucina-2/metabolismo , Ativação Linfocitária , Camundongos , Nanotubos de Carbono/estatística & dados numéricos , Neoplasias Experimentais , Poli I-C/imunologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Sci Total Environ ; 569-570: 223-233, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27343941

RESUMO

Nanomaterials such as nanosilver (AgNP) can be released into the aquatic environment through production, usage, and disposal. Sensitive and cost-effective methods are needed to monitor AgNPs in the environment. This work is hampered by a lack of sensitive methods to detect nanomaterials in environmental matrixes. The present study focused on the development, calibration and application of a passive sampling technique for detecting AgNPs in aquatic matrixes. A Carbon Nanotube Integrative Sampler (CNIS) was developed using multi-walled carbon nanotubes (CNTs) as the sorbent for accumulating AgNPs and other Ag species from water. Sampling rates were determined in the laboratory for different sampler configurations and in different aquatic matrixes. The sampler was field tested at the Experimental Lakes Area, Canada, in lake water dosed with AgNPs. For a configuration of the CNIS consisting of CNTs bound to carbon fiber (i.e. CNT veil) placed in Chemcatcher® housing, the time weighted average (TWA) concentrations of silver estimated from deployments of the sampler in lake mesocosms dosed with AgNPs were similar to the measured concentrations of "colloidal silver" (i.e. <0.22µm in size) in the water column. For a configuration of CNIS consisting of CNTs in loose powder form placed in a custom made housing that were deployed in a whole lake dosed with AgNPs, the estimated TWA concentrations of "CNIS-labile Ag" were similar to the concentrations of total silver measured in the epilimnion of the lake. However, sampling rates for the CNIS in various matrixes are relatively low (i.e. 1-20mL/day), so deployment periods of several weeks are required to detect AgNPs at environmentally relevant concentrations, which can allow biofilms to develop on the sampler and could affect the sampling rates. With further development, this novel sampler may provide a simple and sensitive method for screening for the presence of AgNPs in surface waters.


Assuntos
Monitoramento Ambiental/métodos , Nanopartículas Metálicas/análise , Nanotubos de Carbono/estatística & dados numéricos , Prata/análise , Poluentes Químicos da Água/análise , Lagos/análise , Ontário
6.
Environ Sci Technol ; 45(7): 2562-9, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21391627

RESUMO

The magnitude of engineered nanomaterials (ENMs) being produced and potentially released to the environment is a crucial and thus far unknown input to exposure assessment. This work estimates upper and lower bound annual United States production quantities for 5 classes of ENMs. A variety of sources were culled to identify companies producing source ENM products and determine production volumes. Using refining assumptions to attribute production levels from companies with more reliable estimates to companies with little to no data, ranges of U.S. production quantities were projected for each of the 5 ENMs. The quality of data is also analyzed; the percentage of companies for which data were available (via Web sites, patents, or direct communication) or unavailable (and thus extrapolated from other companies' data) is presented.


Assuntos
Indústria Química/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Nanoestruturas/estatística & dados numéricos , Cério/economia , Indústria Química/economia , Exposição Ambiental/análise , Política Ambiental , Fulerenos/economia , Nanopartículas Metálicas/economia , Nanopartículas Metálicas/estatística & dados numéricos , Nanoestruturas/economia , Nanotubos de Carbono/economia , Nanotubos de Carbono/estatística & dados numéricos , Estados Unidos
7.
Acta Neurochir Suppl ; 106: 337-41, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19812974

RESUMO

Carbon nanotubes have electrical, mechanical and chemical properties that make them one of the most promising materials for applications in neuroscience. Single-walled and multi-walled carbon nanotubes have been increasingly used as scaffolds for neuronal growth and more recently for neural stem cell growth and differentiation. They are also used in interfaces with neurons, where they can detect neuronal electrical activity and also deliver electrical stimulation to these cells. The emerging picture is that carbon nanotubes do not have obvious adverse effects on mammalian health. Thus in the near future they could be used in brain-machine interfaces.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/estatística & dados numéricos , Neurociências , Animais , Humanos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura
9.
Neurodegener Dis ; 4(4): 292-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17627132

RESUMO

BACKGROUND: Carbon nanotubes are one of the most promising materials for the electronics, computer and aerospace industries. There are numerous properties of carbon nanotubes that make them attractive for applications in neurobiology: small size, flexibility, strength, inertness, electrical conductivity and ease of modification with biological compounds. OBJECTIVE/METHODS: Here, we discuss the current applications of carbon nanotubes in neuroscience. RESULTS: Carbon nanotubes and their derivatives can be used as substrates/scaffolds for neural cell growth. The chemical properties of carbon nanotubes can be systematically varied by attaching different functional groups; manipulation of the charge carried by functionalized carbon nanotubes can be used to control the outgrowth and branching pattern of neuronal processes. The ease with which carbon nanotubes can be patterned makes them attractive for studying the organization of neural networks and the electrical conductivity of nanotubes can provide a mechanism to monitor or stimulate neurons through the substrate itself. However, it is important to recognize that carbon nanotubes themselves can affect neuronal function, most likely by interaction with ion channels. CONCLUSION: The use of carbon nanotubes in neurobiology is a promising application that has the potential to develop new methods and techniques to advance the study of neuroscience.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/estatística & dados numéricos , Neurobiologia , Neurônios/fisiologia , Animais , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...